

Airtight Multi-Leaf Damper AMD

DESCRIPTION:

These Volume Control Dampers are suitable for regulating or shutting off the air flow in air ducts with rectangular or square cross sections. The blades are manufactured from aluminum profiles and the frame is produced from galvanized steel sheets. The blade action is realized with the help of gears by a linkage mechanism. All of the dampers are produced either with damper actuators or with actuator bases or with a manual locking quadrant

MATERIAL:

Frama and Blade made of Aluminum

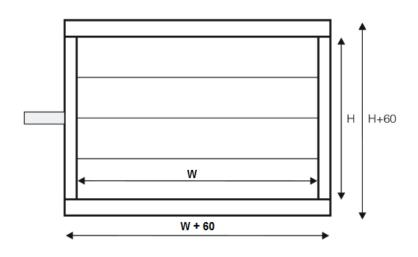
FUNCTION:

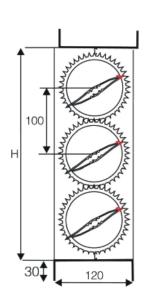
- Multileaf dampers of Type AMD are used as an acting element in the volume flow and pressure control in air conditioning systems
- For low-leakage shut-off of ducts and openings in walls and ceiling slabs
- Powder-coated construction
- Aerofoil blades
- Low-maintenance, robust construction
- No parts with silicone
- Available in standard sizes and many intermediate sizes
- Closed cell side seals meet increased hygiene requirements

INSTALLATION:

Screw

CLASSIFICATION:


- Closed blade air leakage to EN 1751
- Test pressure up to 2000 Pa
- Class 2



STANDARD SIZES (mm):

AVAILABLE SIZES (mm) - Always width x height														
WIDHT														
HEIGHT	200	300	400	500	600	800	1000	1200	1400	1600	1800	2000		
105	X	X	X	Х	Х	Х	Х	X	Х	X	Х	X		
205	Х	Χ	Х	Х	Х	Х	Х	χ	Х	Х	Х	Х		
305	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
405	Х	Χ	Х	Χ	Х	Х	Х	χ	Х	Х	Х	Χ		
505	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
605	Х	Χ	Х	Х	Х	Х	Х	χ	Х	Х	Х	Х		
705	X	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х		
805	Х	Χ	Х	Χ	Х	Х	Х	χ	Х	Х	Х	Χ		
905	X	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х		
1005	Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Х	Χ		
1105	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х		
1205	Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Χ		
1305	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х		
1405	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Χ		
1505	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
1605	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ		
1705	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		

DRAWING

SELECTION TABLES

Flow rate	Size [LxH]	LxH1 800x500		1000x500		1500x500		800x800		1000x800		1200x800		1500x800		1200x1200		1500x1200		1800x1200		0 2000x1200		2200x1200		
(m³/h)	α[*]	0 45		0 45		0 45		0 45		0 45		0 45		0 45		0 45		0 45						0 45		
-	Veff [m/s]	1.3	3.7		-10	-					-10					_		_				-		_		
1000	△Pt [pa]	1.3	8.8																					l		
	Veff [m/s]	1.9	5.5																							
1500	△Pt [pa]	2.5	19.4																							
2000	Veff [m/s]	2.5	7.4																							
2000	△Pt [pa]	4.2	34.3																							
2500	Veff [m/s]	3.1	9.2																							
2300	△Pt [pa]	6.5	53.5																							
3000	Veff [m/s]	3.8	11.1	1.9	5.5																					
3000	△Pt [pa]	9.2	76.8	2.5	19.4																					
3500	Veff [m/s]	4.4	12.9	2.2	6.5																					
5500	△Pt [pa]	12.4	104.5	3.3	26.3																					
4000	Veff [m/s]	5.0	14.8	2.5	7.4																					
	△Pt [pa]	16.1	136.4	4.2	34.3																				\perp	
4500	Veff [m/s]	5.7	16.6	2.8	8.3	1.9	5.5																			
	△Pt [pa]	20.3	172.5	5.3	43.4	2.5	19.4	_							_							_				
5000	Veff [m/s]	6.3	18.4	3.1	9.2	2.1	6.2																			
	△Pt [pa]	25.0	212.9	6.5 3.5	53.5 10.1	3.0 2.3	23.9 6.8	\vdash	_	_		_			_		_					<u> </u>		_	\vdash	
5500 6000 6500	Veff [m/s]			7.8	64.6	3.6	28.9											l								
	△Pt [pa] Veff [m/s]			3.8	11.1	2.5	7.4															_			\vdash	
	△Pt [pa]			9.2	76.8	4.2	34.3																			
	Veff [m/s]			4.1	12.0	2.7	8.0																			
	△Pt [pa]			10.7	90.1	4.9	40.2																			
7000	Veff [m/s]			4.4	12.9	2.9	8.6																			
	△Pt [pa]			12.4	104.5	5.7	46.6																			
7500	Veff [m/s]					3.1	9.2																			
7500	△Pt [pa]					6.5	53.5																			
8000	Veff [m/s]					3.4	9.8																			
0000	△Pt [pa]					7.3	60.8																			
8500	Veff [m/s]					3.6	10.5																			
0300	△Pt [pa]					8.2	68.6																			
10000	Veff [m/s]							5.0	14.6	4.0	11.7	3.3	9.7	2.7	7.8	2.2	6.5									
10000	△Pt [pa]							15.7	132.8	1.0	85.1	0.7	59.2	4.7	38.0	3.4	26.8									
11000	Veff [m/s]							5.5	16.0	4.4	12.8	3.6	10.7	2.9	8.5	2.4	7.2									
	△Pt [pa]							18.9	160.6	12.2	102.9	8.6	71.5	5.6	45.9	4.0	32.3							_	\vdash	
15000	Veff [m/s]									6.0	17.5	5.0	14.6	4.0	11.7	3.3	9.8	2.7	7.8	2.2	6.5	2.0	5.9			
	△Pt [pa]			_	_	_				22.4	191.1	15.7	132.8	10.1	85.1	7.2	59.9	4.7	38.4	3.4	26.8	2.8	21.7	4.0	5.0	
16000	Veff [m/s]									6.4	18.6	5.3	15.5	4.2	12.4	3.6	10.4	2.8	8.3	2.4	6.9	2.1	6.3	1.9	5.6	
	△Pt [pa]			_	_	_		_		25.5 6.8	217.3 19.8	17.8 5.6	151.1 16.5	11.5 4.5	96.8	8.2 3.8	68.1	5.3	43.7 8.9	3.8 2.5	30.4 7.4	2.3	24.7 6.6	2.5	20.1 6.0	
17000	Veff [m/s]									28.7	245.3	20.0	170.4	12.9	109.2	9.2	76.8	6.0	49.3	4.2	34.3	3.5	27.8	2.0	22.5	
	△Pt [pa] Veff [m/s]			_		\vdash		\vdash		20.1	240.5	6.0	17.5	4.8	14.0	4.0	11.7	3.2	9.4	2.7	7.8	2.4	7.0	2.9	6.3	
18000	△Pt [pa]											22.4	191.1	14.5	122.4	10.3	86.1	6.7	55.2	4.7	38.4	3.9	31.2	3.2	25.4	
	Veff [m/s]											6.6	19.4	5.3	15.5	4.4	13.0	3.6	10.4	3.0	8.7	2.7	7.8	2.4	6.2	
20000	△Pt [pa]											27.6	235.8	17.8	151.0	12.6	106.2	8.2	68.1	5.8	47.4	4.7	38.4	3.8	31.1	
20005	Veff [m/s]											25	200.0			6.7	19.5	5.3	15.6	4.4	13.0	4.0	11.7	3.6	10.5	
30000	△Pt [pa]																238.5	18.0	152.8	12.6	106.2	10.3	86.1	8.4	69.8	
25000	Veff [m/s]																	6.2	18.2	5.2	15.2	4.7	13.7	4.2	12.3	
35000	△Pt [pa]																	24.4	207.8	17.0	144.4	13.8	117.0	11.2	94.8	
40000	Veff [m/s]																			5.9	17.4	5.3	15.6	4.8	14.1	
40000	△Pt [pa]																			22.1	188.5	18.0	152.8	14.7	123.9	
45000	Veff [m/s]																			6.7	19.5	6.0	17.6	5.4	15.8	
43000	△Pt [pa]																			28.0	238.5	22.7	193.3	18.4	156.7	

Annotation

\alpha [] - Closing angle of the blades

*\Veff[m/s] - Air velocity through the damper

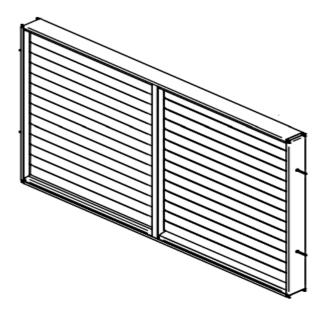
*\Delta Pt [pa] - Pressure loss

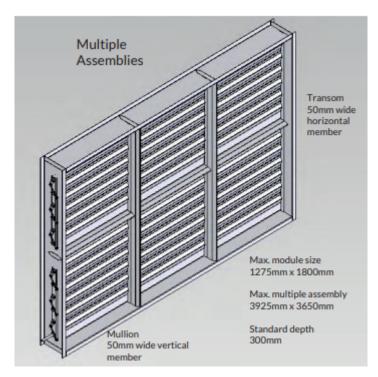
*\Veff [m/s] = Air flow [mc/h] / 3600[s] / Ak[m²]

Damper Blade Position

Closed Position

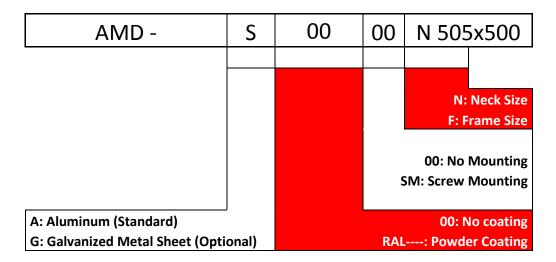
%50 Open


%100 Open



Installation & Assembly

Larger dampers can be constructed by joining multiple assemblies together. An approved fire-resistant sealant should be inserted between the damper and duct to ensure a good seal.


Each section shall have a drive spindle which can be linked together externally or driven independently

ORDER CODE

